2-Groups, 2-characters, and Burnside rings
نویسندگان
چکیده
منابع مشابه
2-Groups, 2-Characters, and Burnside Rings
We study 2-representations, i.e. actions of 2-groups on 2-vector spaces. Our main focus is character theory for 2-representations. To this end we employ the technique of extended Burnside rings. Our main theorem is that the Ganter-Kapranov 2-character is a particular mark homomorphism of the Burnside ring. As an application we give a new proof of Osorno formula for the Ganter-Kapranov 2-charact...
متن کاملPicard Groups, Grothendieck Rings, and Burnside Rings of Categories
We discuss the Picard group, the Grothendieck ring, and the Burnside ring of a symmetric monoidal category, and we consider examples from algebra, homological algebra, topology, and algebraic geometry. In October, 1999, a small conference was held at the University of Chicago in honor of Saunders Mac Lane’s 90th birthday. I gave a talk there based on a paper that I happened to have started writ...
متن کاملCharacters of Finite Groups, Algebraic Integers, and Burnside
The goal of this note is to write down the proofs of results about characters of irreducible representations of finite groups, and specifically, the result (due to Burnside) that each of them vanishes at at least one element of the group. We present various results told to us by various people, and conclude with two theorems by Gallagher, which strengthen or generalize Burnside’s theorem for fi...
متن کاملBurnside rings
1 Let G be a finite group. The Burnside ring B(G) of the group G is one of the fundamental representation rings of G, namely the ring of permutation representations. It is in many ways the universal object to consider when looking at the category of G-sets. It can be viewed as an analogue of the ring Z of integers for this category. It can be studied from different points of view. First B(G) is...
متن کاملThe functor of units of Burnside rings for p-groups
In this paper, I describe the structure of the biset functor B sending a p-group P to the group of units of its Burnside ring B(P ). In particular, I show that B is a rational biset functor. It follows that if P is a p-group, the structure of B(P ) can be read from a genetic basis of P : the group B(P ) is an elementary abelian 2-group of rank equal to the number isomorphism classes of rational...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Mathematics
سال: 2018
ISSN: 0001-8708
DOI: 10.1016/j.aim.2018.09.003